Licencia: CC0 1.0 Universal

Nivel 4 • Análisis • Logarítmica • Teoría (05)

Logaritmos de algunas operaciones

Las propiedades de los logaritmos que históricamente han sido más importantes son aquellas que permiten simplificar expresiones con productos, cocientes, potencias y raíces. Se siguen usando hoy en día porque son muy efectivas.

Logaritmo de un producto

El logaritmo de un producto es igual a la suma de los logaritmos de los factores.

Expresado simbólicamente: $log_a(rs) = log_ar + log_as$

Demostración

Usamos la definición de logaritmo: elevamos «a» a « $\log_a r + \log_a s$ » y comprobamos que obtenemos «rs»: $a^{\log_a r + \log_a s} = a^{\log_a r} \cdot a^{\log_a s} = rs$.

Ejemplo 1: $\log_5(13.57) = \log_5 13 + \log_5 57$

Logaritmo de un cociente

El logaritmo de un cociente es igual al logaritmo del dividendo menos el logaritmo del divisor.

Expresado simbólicamente: $log_a(r:s) = log_ar - log_as$

Demostración

Usamos la definición de logaritmo: elevamos «a» a « $\log_a r - \log_a s$ » y comprobamos que obtenemos «r:s»: $a^{\log_a r - \log_a s} = a^{\log_a r}: a^{\log_a s} = r:s$.

Ejemplo 2: $\log_7(43:13) = \log_7 43 - \log_7 13$

Logaritmo de una potencia

El logaritmo de una potencia es igual al exponente por el logaritmo de la base.

Expresado simbólicamente: $log_a(r^n) = n \cdot log_a r$

Demostración

Usamos la definición de logaritmo: elevamos «a» a « $n \cdot log_a r$ » y comprobamos que obtenemos « r^n »: $a^{n \cdot log_a r} = (a^{log_a r})^n = r^n$.

Ejemplo 3: $\log_3(17^5) = 5 \cdot \log_3 17$

Logaritmo de una raíz

El logaritmo de una raíz es igual al logaritmo de la cantidad subradical dividida entre el índice.

Expresado simbólicamente: $\log_a \sqrt[n]{r} = \frac{\log_a r}{n}$

Demostración

Escribimos la raíz como una potencia y aplicamos la propiedad del logaritmo de

una potencia: $\log_a \sqrt[n]{r} = \log_a r^{\frac{1}{n}} = \frac{1}{n} \cdot \log_a r = \frac{\log_a r}{n}$

Ejemplo 4: $\log_2 \sqrt[3]{11} = \frac{\log_2 11}{3}$

Ejemplo 5

Enunciado: simplifica al máximo la expresión log₂(p³·q⁵)

Resolución: $\log_2(p^3 \cdot q^5) = \log_2 p^3 + \log_2 q^5 = 3 \cdot \log_2 p + 5 \cdot \log_2 q$

Explicación: primero aplicamos la fórmula del producto y luego la de la potencia.

URL: http://pedroreina.net/cms/n4ana-log-tr05.pdf