
Nivel 3 • Geometría • Semejanza • Teoría (15)

Demostraciones del teorema de Tales

Como es habitual en los teoremas que tienen más de mil años de antiguedad, existen multitud de demostraciones distintas del teorema de Tales. Algunas necesitan mayores conocimientos matemáticos que los de este nivel 3, pero otras son perfectamente asequibles ahora. Te presentamos una parte de la demostración que preparó Euclides en su libro *Elementos*.

Teorema

Si en el triángulo ABC se traza el segmento DE paralelo al lado BC que corta a los otros dos, se verifica $\frac{x}{v} = \frac{x}{v}$

Licencia: CC0 1.0 Universal

Demostración

Trazamos los segmentos BE y CD. Consideramos los triángulos BDE y CDE que que se forman:

Segmentos BE y CD	Triángulo BDE	Triángulo CDE	Su base y su altura
D E C	D E C	D E C	D base E altura C

Los triángulos BDE y CDE tienen la misma área, puesto que la base es la misma (el segmento DE) y la altura es la misma (la distancia entre los segmentos DE y BC).

Por tanto, si dividimos las áreas de los triángulos BDE y CDE entre el área del triángulo ADE obtenemos el mismo resultado: $\frac{\acute{A}rea(BDE)}{\acute{A}rea(ADE)} = \frac{\acute{A}rea(CDE)}{\acute{A}rea(ADE)}.$

- * En el primer miembro de la igualdad:
 - Para calcular el área de BDE usamos como base «x» y como altura «h».
 - Para calcular el área de ADE usamos como base «y» y como altura «h».
- * En el segundo miembro de la igualdad:
 - Para calcular el área de CDE usamos como base «x'» y como altura «t».
 - Para calcular el área de ADE usamos como base «y'» y como altura «t».

Triángulo BDE	Triángulo ADE	Triángulo CDE	Triángulo ADE
D E C	D E C	D t E x'	D t E C

Para demostrar el teorema basta desarrollar la expresión y simplificar los factores repetidos en cada división:

$$\frac{\acute{A}rea(BDE)}{\acute{A}rea(ADE)} = \frac{\acute{A}rea(CDE)}{\acute{A}rea(ADE)} \Rightarrow \frac{\frac{1}{2} \cdot x \cdot h}{\frac{1}{2} \cdot y \cdot h} = \frac{\frac{1}{2} \cdot x' \cdot t}{\frac{1}{2} \cdot y' \cdot t} \Rightarrow \frac{x}{y} = \frac{x'}{y'}, \text{ como queríamos demostrar.}$$

URL: http://pedroreina.net/cms/n3geo-sem-tr15.pdf