Nivel 3 • Estadística y probabilidad • Parámetros • Teoría (26)

Cálculo de la desviación típica con el modo estadístico de una calculadora

Una vez introducidos los datos como se explicó, se puede acceder tanto a la suma de los cuadrados de todos los datos como al cálculo directo de la desviación típica:

- La suma de los cuadrados de todos los valores se encontrará cerca de la suma de todos los valores; puede denominarse Σx² o similar.
- La desviación típica se encontrará cerca del cálculo de la media; puede denominarse xon; es importante que no confundas esta tecla con la tecla xon, que calcula un parámetro diferente, que no estudiamos en este curso.

Cálculo de la desviación típica con una hoja de cálculo

Podemos escribir los valores del conjunto de datos y sus frecuencias absolutas por filas, como haremos en este ejemplo, o por columnas, según nos parezca.

Como ejemplo, vamos a calcular la media del conjunto de valores que vemos más abajo en las celdas C1, D1, E1 y F1, que tienen las frecuencias absolutas que vemos, respectivamente, en las celdas C2, D2, E2 y F2. Hemos marcado todos los datos del ejercicio en azul.

	Α	В	С	D	E	F	G
1	Valores	$\boldsymbol{x}_{\mathrm{i}}$	28	29	30	31	↓ Sumas ↓
2	Frecuencias	$f_{ m i}$	7	9	11	12	92
3	Productos	$x_{ m i} \cdot f_{ m i}$	855	1058	1739	624	4276
4	Cuadrados	$\chi_{\mathrm{i}^2} \cdot f_{\mathrm{i}}$	5488	7569	9900	11532	34489
5	Media	\overline{x}	29,72				
6	Desv. típica	σ	1,085				

Para ayudarnos a entender mejor lo que estamos haciendo, podemos escribir algunos textos, que hemos escrito en negro en la tabla de más arriba. A continuación, escribimos las fórmulas:

- En la celda C3 escribimos la fórmula =C1*C2 (el signo igual indica que es una fórmula y el asterisco es como se indica el producto). Copiamos la fórmula de la celda C3 a las celdas D3, E3 y F3 (se puede hacer arrastrando el ratón ade-cuadamente).
- En la celda C4 escribimos la fórmula =C1*C3. Copiamos la fórmula de la celda C4 a las celdas D4, E4 y F4.
- En la celda G2 escribimos la fórmula =SUMA(C2:F2), que significa sumar todos los números que hay en el rango de celdas desde C2 hasta F2 y la copiamos a las celdas G3 y G4.
- En la celda C5 escribimos la fórmula =G3/G2. La precisión con la que se calcula la media se puede ajustar en el mismo programa.
- En la celda C6 escribimos la fórmula =RAIZ(G4/G2-C5^2). La precisión con la que se calcula la desviación típica se puede ajustar en el mismo programa. La función RAIZ podría llamarse de otra manera según el programa. El símbolo «^» sirve para elevar a una potencia.

El programa aplica todas las fórmulas y calcula los resultados (que hemos escrito en verde). Si cambiamos alguno de los datos, el programa recalcula inmediatamente todos los resultados.