Nivel 2 • Aritmética • Proporcionalidad • Teoría (15)

Problemas de proporcionalidad compuesta

En un problema de proporcionalidad compuesta aparecen tres o más magnitudes de modo que cada dos magnitudes dependen entre sí de forma directamente proporcional o inversamente proporcional. Se puede dar cualquier combinación de dependencias.

Ejemplo

El encargado de dirigir la realización de un túnel por el que discurrirá una carretera debe tener en cuenta tres factores a la hora de distribuir el trabajo: el número de trabajadores disponibles, la longitud de túnel que debe preparar y el tiempo disponible para hacerlo.

- * El número de trabajadores y la longitud del túnel son directamente proporcionales, pero para hacer el estudio de esta relación hay que considerar que el tiempo disponible no variará.
- * El número de trabajadores y el tiempo disponible para hacer el túnel son inversamente proporcionales, pero para hacer este estudio hay que considerar que la longitud del túnel no variará.
- ***** La longitud del túnel y el tiempo disponible para hacerlo son directamente proporcionales, pero para hacer el estudio de esta relación hay que considerar que el número de trabajadores asignado no variará.

Enunciados

- ① Si 13 trabajadores hacen un túnel de 100 metros, ¿cuántos trabajadores harán falta para hacer un túnel de 200 metros en el mismo tiempo?
- ② Si 13 trabajadores hacen un túnel en 9 días, ¿cuántos trabajadores harán falta para hacer el mismo túnel en 3 días?
- 3 Si 13 trabajadores hacen un túnel de 100 metros en 9 días, ¿cuántos trabajadores harán falta para hacer un túnel de 200 metros en 3 días?

Resoluciones

① Es un problema de proporcionalidad directa. Como hay que hacer el doble de longitud, hace falta el doble de trabajadores, 26.

La operación se puede escribir así: solución = $13 \cdot \frac{200}{100} = 13 \cdot 2 = 26$

② Es un problema de proporcionalidad inversa. Como se dispone de la tercera parte del tiempo, hacen falta el triple de trabajadores, 39.

La operación se puede escribir así: solución = $13 \cdot \frac{9}{3} = 13 \cdot 3 = 39$

3 Es un problema de proporcionalidad compuesta. Por un lado hace falta el doble de trabajadores y por otro lado hace falta el triple de trabajadores.

Uniendo las dos cosas: solución = $13 \cdot \frac{200}{100} \cdot \frac{9}{3} = 13 \cdot 2 \cdot 3 = 78$

Solución: 78 trabajadores

URL: http://pedroreina.net/cms/n2art-pro-tr15.pdf Licencia: CC0 1.0 Universal